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COMPUTATIONAL TREATMENT OF

TRANSONIC CANARD-WING INTERACTIONS

Vijaya Shankar* and Norman Malmuth** =
Rockwell International Science Center
Thousand Oaks, California 91360

Abstract

The transonic canard-wing interaction problem
is simulated using modified small disturbance (MSD)
transonic theory. The wing and the canard are
treated in a sheared fine grid system that is embed-
ed in a global Cartesian crude grid. An apprepriate
far field and asymptotic expression for the velocity
potential derived using Green's theorem is imple-
mented. Results are presented for a few canard-wing
configurations and compared with available experi-
mental data. The weakening of the wing shock due to
the presence of the canard downwash is illustrated
in terms of contour plots. An empirical incidence
correction for the wing leading edge vortex gives
good agreement with experiment at Yow incidences.
For higher angles of attack, the results indicate
that a more sophisticated vortex roll-up and induc-
tion mode! is required.

Introduction

A number of highly maneuverable fighter config-
urations such as the HiMAT, XFV-12A and Forward
Swept Wing, have been proposed with closely coupled
canard systems which can lead to several advantages
such as higher trimmed-1ift capability, improved
pitching moment characteristics, and reduced trim
drag. Also, the geometric characteristics of close-
ly coupled canard configurations offer an improved
longitudinal cross-sectional area progression which
could result in reduced wave drag at low supersonic
speeds. Additional advantages associated with im-
proved side force capability have been reported by
Re and Capone[1]. The associated interaction due to
such surfaces with the wing as well as those from
conventional tail planes involves important non-
1inear phenomena in the supercritical speed regime.
These effects can significantly change spanwise load
distributions as well as the effective incidence
field. Corresponding modifications of aerodynamic
performance and stability characteristics are there-
fore to be anticipated not only for fighter config-
urations, but with tails interacting with large-
aspect-ratio wings typical of transport arrvange-
ments as well.

To understand clearly the closely coupled
canard-wing interference transonic flow fields with
emphasis on benefits associated with longitudinal
and lateral positioning that have been discussed in
the subsonic regime by Lacey(2] and transonic regime
by Gloss and Washburn[3], 1t 1is essentia) to develop
a computational model that properly simulates the
full nonlineer coog"ng of both surfaces. In this
respect, the mutual induction arises maturelly in
the computational model in contrast to other
“{mmersion” techniques which have been advocated.
The latter employs an iterative procedurs in which
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each surface's isolated aerodynamics is alternately

corrected for induction from the other. This con-
cept may have some validity for large stagger and
gap cases, but may not converge for closely coupled
arrangements. In fact, even if conve is ob-
ta{ned, the result may not be the physically correct
solution.

A mutually interacting two-dimenstional canard-
wing model based on the Karman-Guderley transonic
small disturbance theory is reported in Ref. [4]

showing several parametric studies involving canard- '

wing angles of attack, stagger and cap beiween the
two lifting elements. The objective of the present
study is to extend the two-dimensional analysis to
three-dimensions by modifying an existing small dis-
turbance theory transonic code for wing-body combi-
nations[5] to include the presence of a canard or
tail. Thre approach is to introduce a separate
sheared fine grid box for the canmard similar to the
one used for the wing. However, the experience from
the two-dimensional analysis(4] indicates that
erroneous solutions can result from the use of two
fine grid box arrangement for very closely coupled
canard-wing systems due to placement of the outer
boundaries of the fine grid box in strong nonlinear
regions of the other surface. To avoid this situa-
tion, when the canard is in the close proximity of
the wing, a single fine grid box is used that en-
closes both the 1ifting surfaces. By contrast, the
two fine grid box arrangement is used for mildly
coupled canard-wing configurations. Beside the num-
erical implementation, the paper also includes a
detailed analysis of the appropriate far field pro-
cedure based on an asymptotic theory. The present
paper neglects the dowward deflection of the wake,
vortex roll-up and leading edge separation phenom-
end. These can be important effects and are being
considered in separate analyses.

Results are shown for a few sample canard-wing
configurations and compared with available experi-
mental data.

Equations and Boundary Conditions

The modified form of the transonic classical
small disturbance in conservation forwm as
used {n Ref. (5], will be employed in the current
formulation of the camard/tai] problem.
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ng/canard shape is

Application of boundary

conditions on the mean plane avoids the need for
body-fitted mapping procedures. The subscripts w
and ¢ denote the wing and canard, respectively.

Across the vortex wake,
the velocity potential ¢ whi

there will be a jump in
ch will be incorporated

in the calculation as a boundary condition while
solving £q. (1) at grid points neighboring the wake.

The wake jump condition is
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Eq. 5. To achieve a desired flow resolution for the
two units, a very fine grid with clustering near the
ieading and trailing edges will be used in the
canard and wing boxes. The Cartesian crude grid
will extend sqvera) chord lengths away from the con-
figuration where far field boundary conditions can
be set. For very closely coupled canard-wing

systems the concept of two fine grid box arrangement
can lead to erronsous solutions as well as ical
stability problems due to placement of the outer
boundaries of the fine grid boxes in strong non-
Vinear regions of the other surface. This problem
was experienced in the earlier two-dimensional anal-
ysis{lr Thus, when &8 closely coupled canard-wing
system is analyzed, a single fine grid box that en-
closes both the canard and the wing is used (the
single fine grid box has a shearing transformation
based on the wing planform). This is illustrated

in Figure 3. In this situation, the location of
the canard leading and trailing edges within the
wing sheaved fine grid system is obtained by inter-
polation. Also, the fine grid may have to be speci-
fied manually to achieve desired grid clustering for
the canard. The double fine grid box arrangement of
Figure 2 should work very well for mildly coupled
canard-wing systems.

Solution Procedure

Equation (1) in its Cartesian form is solved in
the global crude grid while the transformed equation
in terms of the new variable z,n,f is solved in the
fine grid box using a successive l1ine over relaxa-
tion algorithm. After each relaxation cycle along
the crude grid-fine grid interface, the potential
values from the crude grid are interpolated on to
the fine grid points and used as Dirichlet boundary
condition for the fine grid box. Similarly, at the
wing and canard mean planes, the potential values
for the crude grid points are obtained from the grid
values and provide a Dirichlet boundary condition
for the crude grid domain. The use of crude grid-
fine grid successive sweep procedure accelerates the
convergence process{6].

Far Field Solution

Along the outer boundaries of the computational
domain it is important to use appropriate far field
boundary conditions. These will be obtajned from a
bi-wing generalization of the asymptotic analysis of
Murman and Cole{7] for non-lifting airfoils and its
three-dimensional wing extension by Klunker[8].

Fig. 4a. Canard-wing system and far-field
bounda

ries

Referring to Figure 42, a M-\nww without
a fusﬂ:gg {s shown. The far field. vation pro-
cedure will be indicated for these elements, and an’
extension to inclusion of the fuselage will be
briefly indicated. Shown in the figure is the
canard surface, sc’ upstream of the min wing, s'.

Also depicted are the respoctive trailing vortex
sheets, Sv(c) and S, of bot~ elements. A z=0 pro-
jection of the compound 1ifting system is indicated

in Figure 4b.

For this derivation, we neglect the dowm. .rd
deflection of the wake for aoderatel{ Yarge down-
stream locations of the computational approximation
of the Trefftz plane boundary. Also neglected in
this treatment are vortex roll-up and leading edge
separation phenomena.

Using the procedure from Refs. [7) and [8], we
obtain the aforementioned integrodifferential equa-
tion for the velocity potential ¢ by applying
Green's theorem to the smal) disturbance equation.
Here we deal with the Karman-Guderley formulation
to illustrate ¢he ba¢’c method to be applied to a
modified small disturbance solver[4]. Using suit-
able strained coordinates (x,y,z) indicated in the
figure (for field points referred to an origin at
the center of the wing leading edge, and a corre-
sponding set (£,n,;) for the dusmy variables, the
small disturbance equation for the perturbation
potential ¢ in this system is

- 9% , %, 3% 2
9322422 ,98.,(
sNel 32 an? 8;’ ( 5)5
For purposes of application of Green's theorem, we
jntroduce a fundamental solution G which satisfies
the following equation

Ve n.c8 = S(e-x)s(n-y)sle-2) . (7)

vﬁ
£
(6)

Thus, G is the usual unit source given by

PR |
6= -am
R? = (x-E)* + (y-n)? ¢ (z-¢)*
Using Green's theorem on the domain cut along

the approximate wake locations shown in Figure 4b,
i.e., the planes, L 0 and y = 0, we obtain

2o §¢
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Canard-wing system - profile view

Fig. .
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where, in the partial integrations, all terms from
the shock surfaces such as o (shown schematically in
Figure 4a2) vanish, and

[f(x.y.2)] = f(x,y,0¢} - f(x.y,0-)

and the £,7 subscripts denote partial differentia-
tion in the integrals

The integrals over the finite domains can, be
lgli jed by approximating the kernels for x2 + y?
+ 22+, with normalized semispan B = o(y? + z%).

This approximation and the condition that can be
arbitrarily prescribed leads to the desired asymp-
totic formula

(8)

o=1 + 1+ (el 4y (9)

where, if the wing and canard are given by the
equations,

l’fu'z(h’) ’ (XLE<X<XTE » 'B<.Y<B)

e o WP <xadd L a v
respectively, then
« 2T . Wing 1ift
ll. anp? [l * Ro] contribution (10a)

thickness
lT s ;:E {j t(E,n)dﬁdﬂ = contribution (lm)

e [ - T o
(C) [1 + Ii] = canard 14ft (10d)
40 [ W 0w
(4
with

A K-8 , Z 2N, ptexter ,
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e te= 07 - 0
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t'fu-f‘
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s
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and B, lc representing respectively the scaled wing
and canard semispans.

Note that in (9)

. m'%: .

I = O(S/%)
asR,»o

O« oty

;he rest of the terms are higher order being
o(l!0 }s which can be neglected for sufficiently

large computational) domains. It is therefore appar-
ent that owing to the linearity of the far field,
the dominant effect is the sum of the two 11ft con-
tributions ll. and IT' Where, as in the two-

dimensiona) case discussed in Ref. [4], there is
however nonlinear coupling between the circulations
I and I‘c.

In a similar fashion, the effect of the far
field of a slender body contribution can be added to
(9) using the nonlinear line source far field
expression given in Ref. [9]. Denoting this term as

F' we have that

Ig = o(Soll!o) a8 Ry -+

where So is the body base area. If, as in typical
cases, Solsc << 1 and Sc << §, then ‘F will be
neglected.

In the vicinity of the projections of the lift-
ing elements in the Trefftz phm. the previous

approximations become invalid. The appropriate
1imits are obtained by assuming

z.y.zc-o(l.lc) as x=+e . (11)

Using the Timit (11), (8) can be approximated to
give the contribution of the projection of the vor-
tex sheets from both elements

J’c Y (n)dn

. (y=n)* + 22
., (12)
. é f ~X{nldn . asx-~

3, (y-n)? ¢ 2t

% {mr ) R
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then
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2z ¢  Y.(n)dn

weam o3 b G

. c

t 1‘21}- .' x+=(13a)

and

ve(y) p
o(x,y.ht) _cz__ + 2‘; ":B I;}:!g%—z; , X+ (13b)

for the fuselage absent.

Equation (12) corresponds to the solution of the
cross flow Laplace's equation for the perturbation
potential in the Trefftz plane cut about the projec-
tions of the wing and canard. If a fuselage is
present, the solution can be obtained by superposing
the appropriate Trefftz plane limit of the nonlinear
line source described in Ref. [9].

Results

A1) the canard-wing calculations presented here
were performed using the LBL CDC 7600 machine. A
single fine grid encompassing both the canard and
wing was used since the configurations consider-
ed in this paper were all very closely coupled
canard systems. A typical fine grid consisted of
90x30x20 points and the crude grid 30x20x20 points.
A total of 100 crude-fine cycles requiring 10-15
minutes of CPU time usually resulted in satisfactory
convergence in which the difference in ¢ ketween two
successive cycles was of the order of 107%.

Gloss and Washburn[3] have made extensive exper-
imental measurements on the close coupled canard-
wing configuration shown in Figure 5. The wing
and canard surfaces consisted of sharp leading edge
circular arc airfoils. The pressure data in their
report clearly indicate a strong leading edge vortex
system especially at higher angles of attack. Since
the computational model in its present form cannot
predict leading edge vortex flows, for comparison
purposes, only the small angle of attack case is
considered, where the leading edge vortex 1s weak.
Figure 6 shows the comparison of spanload distribu-
tion on the wing with and without the presence of

the canard. To match the experdmental 1ift, the
computer code was run at an angle of attack of 5.8°,
while the experiment was conducted at §.12°, The -
increased angle of attack used fa the computationsl
run, is an ad hoc fix to account for the suction
peak associated with the weak leading edge vortex
present in the experimental run as well as viscous
and wall interference effects. Still, there 1s &
discrepancy in the surface pressure distribution
comparison Wen numerical prediction and experi-
mental data’as shown in Figure 7. The presence of
the canard produces a downsash field in front of the
wing causing an effective decrease in the angle of
attack. This results in a reduction in the nose
pressure distribution. The comparison on the lower
surface pressure with and without the camard is very
good. At higher angles of attack the comparison
with data is very poor due to the fnability of the
computational model to predict the leading vortex
system. The case shown in Figure 7 at least indi-
cates the right trend predicted by the computational
model with the canard present and interestingly, is
in qualitative agreegent with the behavior of two-
dimensional systems treated in Ref. [4].

Another canard-wing configuration considered is
shown in Figure 8. Two different canard poditions
in the vertical direction are analyzed. For this
case, the effect of the canard and its position on
the wing sectional 1ift characteristics is shown in
Figure 9, for M, = 0.84 and angle of attack of 3°.
The 1ift produced by the canard produces a downwash
in front of the wing causing the wing 1ift to
decrease. However, at wing span stations away from
the canard tip, the effect of the canard is minimal.
Corresponding to this case, the pressure contours at
the wing span station (y/by) = 0.245 is shown n
Figure 10 for both the canard off and on situatioms.
Figure 10(a) shows the isolated wing case (canard
off) exhibiting a shock on the upper surface. When
the canard is placed at 0.5 Cq above the wing plane
(Cr ¥s the wing root chord), shock weakening on
the wing due to dowmmash produced by the canard is
clear in Figure 10(b). Even further weakening of
the shock due to closer positioning of the canard is
seen in Figure 10{(c). Figure 11 shows the surface
pressure distribution on the wing at varfous spen
stations with canard off and on. This figure also
clearly shows the reduction in wing shock strength
when the canard is present.
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Fig. 7. Effect of canard on wing surface pressures,
yn\' = 0.45, {_ = 0.96
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A sisple casard-wing. transonic computational
mode) 1s presentad. - 1':: formulation neglects wake
:ﬂnﬁu. vortax ull-up m:l l:uiug ﬁy sapare-

on phanomena. A apprapriate far f m
sion for the velocity potential is derived and im-
m—mg Results are presented for two canard-

wing configurations and some . with exper-

" {mental élta is wmade. An mal ncidence

correction for the wing 1 vortex gives
good agreement with experiment 1t Tow incidences.
The presence of the canard produces a dowmeash field
that tends to weaken the shock system on the wing
surface. For higher incidence, some kind of a lead-
ing edge potential vortex core nodﬂ superimposed
onto the present computational treatment would
greatly enhance the iction capability. This
will be pursued §n the future along with suitable
models for incorporating the wake roll-up phenomena.
The computational speed can also be enhanced by use
of implicit factored algorithms.
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